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Abstract

Heat lines and mass lines are well established as powerful tools for visualization and analysis of two-dimensional

convective heat and/or mass transfer. These tools were proposed in the eighties, and their use and range of use in

the field of convective heat and/or mass transfer have grown since they were proposed. In this work, a new field based

on the momentum functions and momentum lines is proposed for steady flow visualization and analysis. As momentum

is a vector entity, two momentum functions need to be defined and evaluated, one for each momentum component. The

contour plots of the momentum functions, the momentum lines, are the useful tools for flow visualization and analysis.

Additionally, momentum arrows can also be used for visualization purposes. Such tools provide a clear physical insight

about the momentum transfer in flows, and important information concerning the forces between the fluid and the solid

walls interacting with it. Some illustrative examples are presented in order to show the usefulness of the momentum

lines for flow visualization and analysis.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The heatfunction and heat lines were proposed by

Kimura and Bejan [1] as the adequate tools for convec-

tive heat transfer visualization. Before that, the heat flux

lines were routinely used for analyzing pure conduction

heat transfer in isotropic media [2], the heat flux lines

being perpendicular to the isotherms. The heatfunction

and heat lines are the convective heat transfer counter-

part of the streamfunction and stream lines, used for

long time for visualization and analysis of flow prob-

lems, the heat lines defining well bordered corridors (en-

ergy tubes) where energy flows. The concept evolved to
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problems involving convective mass transfer, through

the introduction of the massfunction and mass lines by

Trevisan and Bejan [3]. As the mass and energy conser-

vation equations are the same in open fluid domains and

in porous domains, the heat lines and mass lines can be

equally applied when dealing with convective heat and/

or mass transfer problems in porous domains.

Several improvements were made to enlarge the

applicability range of the heat lines and mass lines. Such

improvements include the use of the heat lines in cylin-

drical systems [4], and unsteady problems [5,6]. Also

the similarity solutions for the heatfunction were ob-

tained for laminar boundary layer problems under dif-

ferent heating or cooling conditions, including forced

convection near a flat plate [7], forced convection near

a flat plate in a fluid saturated porous medium [8], and

natural convection near a vertical flat plate [9]. The heat
ed.
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Nomenclature

Cf skin-friction coefficient

D width

Dh hydraulic diameter

f friction factor

f similarity function

F force

g gravitational acceleration

g auxiliary function

H height

L length

M momentum function

n auxiliary coefficient

p pressure

Re Reynolds number

s segment

U inlet or reference velocity

u, v Cartesian velocity components

x, y Cartesian co-ordinates

X momentum transfer parameter

Greek symbols

d boundary layer thickness

d Kronecker�s delta
g similarity variable

h angle (surface orientation)

l dynamic viscosity

q density

r stress component

s stress

w streamfunction

Subscripts

D referring width D

i, j, k Cartesian indices

L referring length L

n normal

ob obstacle

r reference value

t tangential

x, y referring Cartesian co-ordinates

0 reference value

* dimensionless

1 free stream value

Superscript

x, y referring Cartesian directions
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line concept was developed for turbulent flows, using the

turbulent flux components [10] or an effective diffusion

coefficient that includes the eddy diffusivity for heat

transfer when dealing with turbulent boundary layer

flows [11]. A unified formulation was proposed for the

stream line, heat line and mass line methods [12], with

special emphasis on the diffusion coefficients for these

functions if adjacent media of different properties are

present. In this way, a unified treatment is available to

be incorporated into software packages for heat and/or

mass transfer and fluid flow. The unified treatment has

been extended to deal with convection in anisotropic

fluid saturated porous media [13]. These visualization

tools can be applied when the mass and energy govern-

ing differential equations are divergence-free, and thus

only recently they were applied to reacting flows

[14,15]. In this case, in order to have divergence-free

equations, the selected conserved scalars are the total en-

thalpy (enthalpy of formation plus sensible enthalpy)

and the elemental mass fractions. In the first work

[14], special (and involved) forms of the conservation

equations and of their transport coefficients need to be

incorporated. In a more recent work, a unified treatment

is proposed to deal with reacting flows, which is simpler

and physically consistent [15]. A recent review on the

heat line and mass line methods can be found in [16].
The steady momentum equations, without source

term, can also be treated as divergence-free, noting that

the pressure gradient term is a surface term and not a

volumetric term. It should be noted, however, that the

pressure gradient term is usually referred to as a momen-

tum source term, even if it is not a true source term.

Once the momentum equations are represented in this

way, one can obtain the momentum functions, whose

contour plots, i.e. the momentum lines, are very useful

tools for flow visualization and analysis. Once known

the momentum functions, they can be used to obtain

pictures, in the form of momentum arrows, which can

be equally important for visualization and analysis.

Usually, the flow problems are visualized and analyzed

through the stream lines (defining mass tubes), which

are very useful to have a good picture of flow kinetics,

but they do not provide any indication how the forces

within the fluid interact, and how the fluid interacts with

the walls containing it. The momentum lines provide a

very clear physical insight about these interactions, in

the form of forces, which are of great value for flow visu-

alization and analysis. When compared with the stream

lines, heat lines and mass lines, some additional care

needs to be taken due to the vector nature of the forces,

and regarding the conventions used to analyze the stress

components and their associated forces.
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2. Physical modeling

2.1. Equations governing 2D steady incompressible flows

The 2D steady incompressible flow problems in open

fluid domains are governed by the mass conservation

equation, that can be written using the indicial notation

as

o

oxi
ðquiÞ ¼ 0 ð1Þ

and by the momentum equations [17]

o

oxi
ðquiujÞ ¼ � oðp � p0Þ

oxj
þ osij

oxi
ð2Þ

where the tensor stress components, for a Newtonian

fluid, are obtained as

sij ¼ l
oui
oxj

þ ouj
oxi

� �
� 2

3
l
ouk
oxk

dij ð3Þ

The reference value for the pressure, p0, is arbitrarily

chosen, as the pressure level is irrelevant when dealing

with incompressible flow problems. In this work, p0 is ta-

ken as the minimum pressure value in the domain, the

acting pressure is always positive, thus giving rise to

compressive stresses only. Pressure present in Eq. (2) is

the driving pressure, which effectively drives the flow,

obtained as the total real pressure plus the hydrostatic

pressure, that is, p = preal + qgy, where the gravitational

acceleration g points downward in the y direction [17]. If

the real force over the domain boundaries is to be eval-

uated, both the hydrostatic pressure and the reference

pressure should be taken into account. For non-polar

fluids sij = sji. If the fluid is incompressible, the term

ouk/oxk vanishes in Eq. (3), invoking the mass conserva-

tion equation, Eq. (1), what corresponds to the situa-

tions considered in this work.

For the 2D situations, the mass conservation equa-

tion can be rewritten as

o

ox
ðquÞ þ o

oy
ðqvÞ ¼ 0 ð4Þ

and the momentum equations can be rewritten as

o

ox
quuþ ðp � p0Þ � sxx½ � þ o

oy
ðquv� sxyÞ ¼ 0 ð5Þ

o

ox
ðquv� sxyÞ þ

o

oy
½qvvþ ðp � p0Þ � syy � ¼ 0 ð6Þ

The stress tensor components are obtained from Eq.

(3) as

sxx ¼ 2l
ou
ox

; syy ¼ 2l
ov
oy

;

sxy ¼ syx ¼ l
ou
oy

þ ov
ox

� �
ð7Þ
2.2. Momentum functions and momentum lines

From Eq. (5) one can define the momentum function

Mx, in the co-ordinate direction x, through its first-order

derivatives as

oMx

oy
¼ quuþ ðp � p0Þ � sxx ð8aÞ

� oMx

ox
¼ quv� sxy ð8bÞ

Equating the second-order mixed derivatives of Mx,

assuming that Mx is a continuous function to its sec-

ond-order derivatives, Eq. (5) is satisfied identically.

Similarly, from Eq. (6) one can define the momentum

function My, in the co-ordinate direction y, through its

first-order derivatives as

oMy

oy
¼ quv� sxy ð9aÞ

� oMy

ox
¼ qvvþ ðp � p0Þ � syy ð9bÞ

Again, equating the second-order mixed derivatives

of My and assuming that My is a continuous function

to its second-order derivatives, Eq. (6) is satisfied identi-

cally. Having defined the momentum functions corre-

sponding to the two Cartesian co-ordinate directions,

some explanation is given about its physical meaning

and interpretation.

The total differential of the momentum function Mx

can be obtained, invoking Eqs. (8a) and (8b), as

dMx ¼ oMx

ox
dxþ oMx

oy
dy

¼ �ðquv� sxyÞdxþ ½quuþ ðp � p0Þ � sxx�dy ð10Þ

and the total differential of the momentum function My

can be obtained, invoking Eqs. (9a) and (9b), as

dMy ¼ oMy

ox
dxþ oMy

oy
dy

¼ �½qvvþ ðp � p0Þ � syy �dxþ ðquv� sxyÞdy ð11Þ

These total differentials can be physically interpreted

considering Fig. 1, where the stress components existing

at a given point are presented for a differential control

element with a unit depth [18]. The condition of equilib-

rium in the x direction gives that

rx ds ¼ �ðquv� sxyÞdxþ ½quuþ ðp � p0Þ � sxx�dy
¼ dMx ð12Þ

and the condition of equilibrium in the y direction gives

that

ry ds ¼ �½qvvþ ðp � p0Þ � syy �dxþ ðquv� sxyÞdy
¼ dMy ð13Þ
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Fig. 1. Evaluation of the stress components rx and ry acting

over a differential surface of unit depth.
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There are two important observations from these re-

sults. The difference in the momentum function Mx, cor-

responding to two points 1 and 2 in the domain, gives

the additional force in the x direction, per unit depth,

encountered when traveling from point 1 to point 2. It

also implies that a line of constant Mx, a contour plot

of Mx, where dMx = 0, is a line along which there is

no stress (or force) in the x direction. The region be-

tween two lines of constant values of Mx can then be

seen as a beam, whose surface is not subjected to applied

forces in the x direction. There are the lines of constant

Mx, the x momentum lines, which provide a useful tool

for flow visualization and analysis of the existing inter-

actions in the flow, in the form of forces. Similar conclu-

sions can be extracted for the momentum function My,

whose contour plots are the y momentum lines. In this

case, the region between two lines of constant values

of My can be seen as a beam, whose surface is not sub-

jected to applied forces in the y direction.

Additionally, the momentum functions can be used

to obtain momentum arrows, and thus to another way

for flow visualization and analysis. For the considered

cases, however, pictures given by the momentum lines

are much better than the ones given by the momentum

arrows.

2.3. Differential equations for the momentum functions

The differential equation for the x momentum func-

tion Mx can be obtained from Eqs. (8a) and (8b), evalu-

ating and adding the second-order derivatives of Mx,

resulting in the Poisson equation
o2Mx

ox2
þ o2Mx

oy2
¼ � o

ox
ðquvÞ þ o

oy
ðquuÞ þ oðp � p0Þ

oy

� 2
o

oy
l
ou
ox

� �
� o

ox
l

ou
oy

þ ov
ox

� �� �� �

ð14Þ

If the dynamic viscosity l can be taken as constant,

Eq. (14) becomes

o2Mx

ox2
þ o2Mx

oy2
¼ � o

ox
ðquvÞ þ o

oy
ðquuÞ þ oðp � p0Þ

oy

� l
o

ox
ou
oy

� ov
ox

� �
ð15Þ

The differential equation for the momentum function

My can be obtained similarly from Eqs. (9a) and (9b) as

o2My

ox2
þ o2My

oy2
¼ � o

ox
ðqvvÞ þ o

oy
ðquvÞ � oðp � p0Þ

ox

� o

oy
l

ou
oy

þ ov
ox

� �� �
� 2

o

ox
l
ov
oy

� �� �

ð16Þ

or, taking the dynamic viscosity as constant,

o2My

ox2
þ o2My

oy2
¼ � o

ox
ðqvvÞ þ o

oy
ðquvÞ � oðp � p0Þ

ox

� l
o

oy
ou
oy

� ov
ox

� �
ð17Þ

These are the differential equations that are solved,

once the flow field is solved, to obtain the momentum

function fields. It can be mentioned that the last term

within brackets in Eqs. (15) and (17) is the symmetric

of one-half of the rotational of the velocity field, that

is, (ou/oy � ov/ox) = �2-z, where -z = (1/2)$ · V.

It should be noted that, for a fluid of constant density

and viscosity, the momentum equations could be written

in the form of Eqs. (5) and (6) as [11,18]

o

ox
quuþ ðp � p0Þ � l

ou
ox

� �
þ o

oy
quv� l

ou
oy

� �

¼ 0 ð18aÞ

o

ox
quv� l

ov
ox

� �
þ o

oy
qvvþ ðp � p0Þ � l

ov
oy

� �

¼ 0 ð18bÞ

and it is tempting to define the momentum functions,

through their first-order derivatives, using the terms

within brackets in Eqs. (18a) and (18b). However, the

corresponding terms in the original equations, Eqs. (5)

and (6), are different from the terms in the momentum

equations as given by Eqs. (18a) and (18b). This differ-

ence is due to simplifications made in the momentum

equations, using the mass conservation equation, that

are possible due to the derivatives present in the viscous
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Fig. 2. Stress components at the faces with different orientation

angles.
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terms of Eqs. (5) and (6). But the true, and total stress

terms are those in the original momentum equations,

Eqs. (5) and (6), and the momentum functions must be

defined through their first-order derivatives using the

original Eqs. (5) and (6), and not from the simplified

Eqs. (18a) and (18b).

2.4. Boundary conditions for the momentum functions

Since momentum functions Mx and My are defined

through its first-order derivatives (Eqs. (8) and (9)), only

differences on their values are important, and not their

levels. As the momentum functions are evaluated, once

the flow field is solved, using available analytical or

numerical techniques, the flow solution at the bound-

aries is used to set the boundary values of the

momentum functions. This is illustrated for the Mx

momentum function, in a rectangular domain, and a

similar procedure can be used for other domains and

also for the My momentum function.

At an arbitrary reference point at the boundary,

(xr,yr), the momentum function is set to be Mx(xr,yr) =

0 or it is known by any way. If the reference point (xr,yr)

is over a horizontal boundary, the Mx value over any

point of such boundary is set, from Eq. (8b), as

Mxðx; yrÞ ¼ Mxðxr; yrÞ �
Z x

xr

quv� sxy
� 	

dx ð19Þ

If u = 0 or v = 0 at such a boundary, then Eq. (19)

becomes

Mxðx; yrÞ ¼ Mxðxr; yrÞ þ
Z x

xr

l ou=oy þ ov=oxð Þdx ð20Þ

If the reference point (xr,yr) is over a vertical boundary,

the Mx value over any point of such boundary is set,

from Eq. (8a), as

Mxðxr; yÞ ¼ Mxðxr; yrÞ þ
Z y

yr

½quuþ ðp � p0Þ � sxx�dy

ð21Þ

If u = 0 at this vertical boundary, Eq. (21) becomes

Mxðxr; yÞ ¼ Mxðxr; yrÞ þ
Z y

yr

½ðp � p0Þ � 2lðou=oxÞ�dy

ð22Þ

At this point some attention should be given to the

physical significance of the boundary conditions as spec-

ified in Eqs. (20) and (22), corresponding to boundary

conditions at a solid impermeable boundary (u =

v = 0). The physical insight is more relevant at these

boundaries, as they are routinely studied in fluid dynam-

ics. Similar considerations can be made also for the

boundary conditions pertaining to the momentum func-

tion My. Along the horizontal boundary ov/ox = 0, and

Eq. (20) gives Mxðx; yrÞ ¼ Mxðxr; yrÞ þ
R x
xr

lðou=oyÞdx. It
is well known that, at such a boundary, the shear stress

is l(ou/oy), and the variation of the momentum function

Mx from xr to x is the applied boundary shear force, by

unit depth. At this horizontal boundary, the force in-

duced by pressure in the x direction is absent. Along

the vertical boundary, the normal stress in the x direc-

tion is �2l(ou/ox), and the x-direction force induced

by pressure exists, the total normal stress being

[(p � p0) � 2l(ou/ox)]. In this way, the variation of the

momentum function Mx from yr to y is the applied nor-

mal boundary force, by unit depth.

If the boundary is inclined relative to the Cartesian

co-ordinate system, like the situation presented at the

differential level in Fig. 1, the expression for the normal

(compressive) stress, rn, can be obtained as

rn ¼
1

2
ðquu� sxxÞð1� cos 2hÞ þ 1

2
ðqvv� syyÞ 1þ cos 2hð Þ

þ ðp � p0Þ � quv� sxy
� 	

sin 2h ð23Þ

and the expression for the tangential stress, rt, in the

direction away from the pivotal point P in Fig. 1, is

rt ¼ � quv� sxy
� 	

cos 2h

þ 1

2
quu� sxx � qvvþ syy
� 	

sin 2h ð24Þ

As expected, pressure acts always as a compressive

stress, and does not give any contribution to the tangen-

tial stress. The state of stress for a surface with a given

orientation can be obtained applying Eqs. (23) and

(24), and the results for the different faces of a differen-

tial element are presented in Fig. 2. Special care is

needed when analyzing the stresses, because their signs

are dependent on the orientation of the considered sur-

face, as shown in Fig. 2.

Momentum functions were presented and discussed

in the context of viscous flows. However, they can be
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equally applied for inviscid flows. In that case, the fore-

going results apply with l = 0 (zero shear stress), and the

momentum functions give a picture of the interplaying

inertial and pressure forces.
3. Illustrations

In order to illustrate the use of the momentum func-

tions and momentum lines for flow visualization and

analysis, four simple laminar flow problems are consid-

ered: (i) Couette flow between parallel plates, without

pressure gradient, (ii) fully developed laminar flow be-

tween parallel plates, (iii) forced boundary layer flow

over a flat plate (similarity solution for the momentum

function), and (iv) forced flow in a channel with an

obstacle.

3.1. Couette flow between parallel plates, without

pressure gradient

The domain under analysis is presented in Fig. 3, and

consists of a horizontal channel of width D and length

L = D, delimited by two parallel plates. The upper plate

moves with uniform velocity U and the lower plate is at

rest.

The flow is assumed to be laminar and fully devel-

oped, and all the fluid particles move in the direction

parallel to the plates. From the vertical momentum

equation it is obtained that op/oy = 0. As the velocity

component u is constant with x, the horizontal momen-

tum equation reads �dp/dx + l(d2u/dy2) = 0. In this

case, it is assumed that the flow moves due to shear only,

and that pressure gradient is absent. The treatment of

this problem including pressure gradient in the x direc-

tion can be found, for example, in Ref. [18]. Making

the y co-ordinate dimensionless as y
*
= y/D and the

velocity dimensionless as u
*
= u/U, the dimensionless

velocity profile is

u	 ¼ y	 ð25Þ

Noting that the pressure is constant, and (p � p0) = 0,

from Eqs. (8a) and (8b) the momentum function Mx is

defined through (oMx/oy) = quu and �(oMx/ox) =
x
y

D

U

Fig. 3. Physical model and geometry for the Couette flow

problem.
�l(du/dy). Making the momentum function dimension-

less as Mx
	 ¼ Mx=ðqU 2DÞ, and using Eq. (25), the dimen-

sionless momentum function Mx
	 is defined through

oMx
	

oy	
¼ y2	 ð26aÞ

oMx
	

ox	
¼ ð1=ReDÞ ð26bÞ

where ReD = qUD/l.
From Eqs. (26a) and (26b), the analytical solution for

the dimensionless momentum function Mx
	 is obtained as

Mx
	ðx	; y	Þ ¼

1

3
y3	 þ

1

ReD
x	 ð27Þ

once set that Mx
	ð0; 0Þ ¼ 0.

Similarly, the momentum function My, defined from

Eqs. (9a) and (9b) is obtained through (oMy/oy) =

�l(du/dy) and �(oMy/ox) = 0, and My is function of y

only. The dimensionless version of the differential equa-

tion for My
	 is thus

dMy
	

dy	
¼ � 1

ReD
ð28Þ

whose analytical solution gives

My
	ðx	; y	Þ ¼ � 1

ReD
y	 ð29Þ

once verified that My
	ð0; 0Þ ¼ 0.

It should be noted here that if the My momentum

function was defined from the simplified y momentum

equation, Eq. (18b), it would give oMy/oy = 0. In fact,

if the shear stress syx = l (ou/oy) exists in the x direction,

by the principle of reciprocity of the shear stresses this

same shear stress also exists in the y direction. However,

as the velocity profile does not change with x, the term o/

ox[l(ou/oy)] vanishes in the y momentum equation. But,

in reality, the shear stress in the y direction exists, and it

is taken correctly into account in the momentum func-

tion definition if the original momentum equations,

Eqs. (5) and (6), are taken.

Results obtained for the dimensionless momentum

functions Mx
	 and My

	 are presented in Fig. 4a–c. It is ob-

served from Fig. 4a and c that the momentum function

Mx
	 increases uniformly with x

*
, as expected from Eq.

(26b). It is observed that this increase is more intense

for lower values of the Reynolds number (higher viscos-

ity fluids). It is also observed that the slope of the

momentum lines is constant at the upper and lower

plates, as indicated from Eq. (26a) for constant values

of y
*
. In particular, this slope is null for y

*
= 0, similarly

to what happens with the heatfunction near imperme-

able isothermal walls [12].

At the upper boundary of the fluid, the shear stress

points in the x
*
direction, what corresponds to a positive

rx in Fig. 1 for h = 0, and the momentum function Mx
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Fig. 4. Dimensionless momentum lines for the Couette flow problem: (a) momentum linesMx
	 for ReD = 1; (b) momentum linesMy

	 for

ReD = 1 and (c) momentum lines Mx
	 for ReD = 10.
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increases with x
*
at the upper plate, for which y

*
= 1. At

the lower boundary of the fluid, the shear stress points in

the �x
*
direction, what corresponds to a negative rx in

Fig. 1 for h = p, and to a positive shear stress there, and

the momentum function Mx
	 also increases with x

*
at the

lower plate, for which y
*
= 0. Lines of constant momen-

tum function Mx
	 are lines where the stress (or force) in

the x
*
direction is zero, and the region between two of

such momentum lines can be seen as a beam in which

surface (exception made to the boundary domain sur-
faces) there are no applied forces in the x
*
direction,

as illustrated in Fig. 5. Along such a beam, the force

in the x
*
direction is transmitted through action–reac-

tion pairs of forces, in accordance with the Newton�s
third law. The overall dimensionless force acting in the

x
*
direction, over the upper and lower plates, can be eas-

ily obtained as the respective overall difference in the

dimensionless momentum function Mx
	.

It is also observed that the inertial terms become

more important as the Reynolds number increases, by
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U

Fig. 6. Physical domain and geometry for the fully developed

flow problem between parallel plates.

No x force

Fig. 5. Illustration of the region between two momentum lines

of Mx
	 as a beam without surface stresses or forces.
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comparing Fig. 4a and c. When viscous effects are

higher, as in Fig. 4a, the momentum in the x
*
direction

is transferred from the moving upper plate to the lower

plate by fluid beams, which are nearly vertical. However,

for higher Reynolds number, the momentum in the x
*

direction is transferred from the moving upper plate to

the lower plate by fluid beams with high inclination. In

this case, the forces are transmitted through long

lengths, along the so-called fluid beams. The inertial in-

let of momentum in the x
*
direction can be obtained by

analyzing the increase of the dimensionless momentum

function Mx
	 along a vertical surface of Fig. 4a or c.

Regarding momentum function My
	, presented in Fig.

4b, it is observed that it decreases with y
*
, as expected

from Eq. (29). The shear stress in this flow, the only

stress component in the y
*
direction is sxy,* = 1/ReD,

and positive in the whole domain, but it points down-

ward when analyzing the left side of the vertical face

of a differential element, and it points upward when ana-

lyzing the right side of the vertical face of the same dif-

ferential element. As such stresses point in opposite

senses of a differential element, they do not give rise to

any resulting force in the y
*
direction. Another way to

interpret these results is to see from Fig. 4b that, at

the upper or lower boundaries, there is no change of

the momentum function, and thus there is no resulting

net force in the y direction acting over such boundaries.

From Fig. 2 it can be seen that the left face of a differen-

tial element corresponds to h = p/2, and, at such a face,

ry points upward. From Fig. 2, for h = p/2, it can be

seen that ry,* = �sxy,* = �1/ReD. The value of the

dimensionless momentum function My
	 is the integral

of ry,*
along the y

*
direction, as indicated in Eq. (29).

Different values of the Reynolds number will give differ-

ent fields of the momentum function My
	, but the pattern

of the momentum lines of My
	 remains the same as in

Fig. 4b.

3.2. Fully developed laminar flow between parallel plates

The domain under analysis is presented in Fig. 6, and

consists of an horizontal channel of width D and length
L, delimited by two parallel plates, where a fluid flows in

fully developed laminar regime.

It is well known that, for this problem, v = 0 and (ou/

ox) = 0 [11]. Under such assumptions the momentum

equation in the y direction, Eq. (6), gives op/oy = 0,

and pressure is a function of x only. The momentum

equation in the x direction, Eq. (5), becomes dp/

dx = l(o2u/oy2). As the left side of this relation depends

only of x, and the right side depends only of y, each

of these terms must be constant, and it can be written

that

d2u
dy2

¼ � 1

l
� dp
dx

� �
ð30Þ

where �dp/dx is a constant. This equation can be solved

noting that it is u = 0 at y = ± D/2, to give the Hagen–

Poiseuille solution

u ¼ 3

2

D2

12l
� dp
dx

� �� �
1� 4

y
D

� �2
� �

ð31Þ

y being measured away from the channel centerline. The

term within the first square brackets is the average veloc-

ity in the channel, usually referred to as U = [D2/

(12l)][�(dp/dx)]. Thus, the average velocity U and the

negative of the pressure drop are proportional, and the

u velocity profile is parabolic.

For a given mass flow rate, an average velocity U is

specified, and so are the Reynolds number, ReD =

qUD/l, and the pressure gradient, which is �(dp/

dx) = (12l/D2)U. Making the velocity dimensionless as

u
*
= u/U, and the co-ordinates dimensionless as

(x
*
,y

*
) = (x,y)/D, the dimensionless counterpart of Eq.

(35) is

u	 ¼ 3=2ð Þ 1� 4y2	
� 	

ð32Þ

The pressure decreases linearly with x, and its gradi-

ent can be expressed as �(dp/dx) = � [p(L) � p(0)]/L.

The reference pressure, p0, is taken as the minimum pres-

sure value, p0 = p(L). If pressure is made dimensionless

as p
*
= p/(qU2), the dimensionless linearly decreasing

pressure variation with x
*
is

ðp	 � p0;	Þ ¼ p	ð0Þ � p0;	
 �


 1� D=Lð Þx	½ � ð33Þ

and the dimensionless pressure gradient is
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� dp	
dx	

¼ 12

ReD
ð34Þ

From Eqs. (33) and (34) it is obtained that

[p
*
(0) � p0,*] = (12/ReD)(L/D), and Eq. (33) can be

rewritten as

p	 � p0;	
� 	

¼ 12

ReD

L
D
� x	

� �
ð35Þ

In this case the momentum function Mx is defined

from Eqs. (8a) and (8b) through (oMx/oy) =

quu + (p � p0) and �(oMx/ox) = �l(ou/oy) or, if the

momentum functions are made dimensionless as

ðMx
	;M

y
	Þ ¼ ðMx;MyÞ=ðqU 2DÞ, and using Eqs. (32) and

(35), as

oMx
	

oy	
¼ 9

4
1� 4y2	
� 	2 þ 12

ReD

L
D
� x	

� �
ð36aÞ

oMx
	

ox	
¼ � 12

ReD
y	 ð36bÞ

From Eqs. (36a) and (36b) it is obtained, by integration,

the analytical expression for the dimensionless momen-

tum function Mx
	 as

Mx
	ðx	; y	Þ ¼ y	

9

4
1� 8

3
y2	 þ

16

5
y4	

� �
þ 12

ReD

L
D
� x	

� �� �

ð37Þ

For this problem, the momentum function My is

defined from Eqs. (9a) and (9b) through (oMy/oy) =

�l(ou/oy) and �(oMy/ox) = (p � p0) or, in the dimen-

sionless form, taking present Eqs. (32) and (35),

oMy
	

oy	
¼ 12

ReD
y	 ð38aÞ

oMy
	

ox	
¼ � 12

ReD

L
D
� x	

� �
ð38bÞ

From Eqs. (38a) and (38b) it is obtained the analytical

expression for the dimensionless momentum function

My
	 as

My
	 x	; y	ð Þ ¼ 6

ReD
�2x	

L
D
� 1

2
x	

� �
þ y2	

� �
ð39Þ

The note following Eq. (29), relative to the eventual

use of the simplified y momentum equation to define

the y momentum function, also applies in this case.

Results of the momentum functions for this problem,

in the form of momentum lines, are presented in Fig.

7a–d. The momentum function Mx
	 is symmetric relative

to the centerline, for which y
*
= 0, what is an expected

result given the symmetry of the flow profile. For

y
*
= 0 it is Mx

	 ¼ 0, another expected result nothing that

the plane y
*
= 0 is a symmetry plane. The entering

momentum in the x direction, through the inertial term

quu and through the pressure term (p � p0) is trans-
ferred along the channel, and is directed towards the

channel walls. For low Reynolds numbers (high viscos-

ity fluids), the momentum transfer to the walls is more

intense, and the paths followed by the entering momen-

tum are shorter. As the shear stress is constant at the

walls, also the variation of the momentum function is

constant there. However, low Reynolds numbers lead

to a more intense variation of the momentum function

at the walls, as well as to higher overall forces corre-

sponding to the wall–fluid interaction. At the upper

wall, the fluid experiences a shear stress in the �x direc-

tion (a negative shear stress), and the momentum func-

tion decreases along the upper wall. At the lower wall,

the shear stress is also in the �x direction (a positive

shear stress), and the momentum function increases

along it. At the inlet region, the inertia and pressure

terms both point in the x direction (corresponding to

the left face of the element under analysis), and the

momentum function monotonically increases along such

a boundary. In this case, as pressure forces are acting in

the x direction, the slope of the momentum lines is not

zero at the walls.

For this problem, the hydraulic diameter is Dh = 2D,

and the friction factor, constant along the upper and

lower walls, is defined as [11]

f ¼
j sxy jy¼�D=2

ð1=2ÞqU 2
¼ 12

ReD
¼ 24

ReDh

ð40Þ

It can be seen that the variation of the dimensionless

momentum function Mx
	 with x

*
is directly related with

f, noting that, from Eq. (36b),

oMx

ox

����
����
y¼�D=2


 D

ð1=2ÞqU 2D
¼ 12

ReD
¼ 24

ReDh

¼ f ð41Þ

In this way, if the momentum function Mx is made

dimensionless using the factor (1/2)qU2D as reference,

as in Eq. (40), the variation of the dimensionless

momentum function Mx
	 with x

*
equals the friction fac-

tor f. Comparing with what happens in heat transfer, if

an overall dimensionless parameter analogue to the

overall Nusselt number is defined as the ratio between

the forces in the x direction

X 0�L ¼
F x

F ref

¼
R L
0

sxy
� 	

y¼�D=2
dx

qU 2D

¼ Mx
	ðL=DÞ �Mx

	ð0Þ
 �

y	¼�1=2
ð42Þ

that is, this dimensionless overall coefficient equals the

overall change of the dimensionless momentum function

Mx
	 along the considered length L.

The dimensionless momentum function My
	 is pre-

sented in Fig. 7b, through the momentum lines, for

ReD = 1. Different Reynolds numbers lead to different
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Fig. 7. Dimensionless momentum lines for the fully developed flow problem between parallel plates: (a) momentum lines Mx
	 for

ReD = 1; (b) momentum lines My
	 for ReD = 1; (c) momentum lines Mx

	 for ReD = 10 and (d) momentum lines Mx
	 for ReD = 100.
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Fig. 8. Physical domain and geometry for the forced laminar

boundary layer flow problem.
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values of the momentum function, but the pattern of

Fig. 7b is maintained. If the vertical shear stress were

not present, as is occurs at the centerline of the channel,

the momentum lines where vertical. However, as this

shear stress is present, and its intensity increases as the

walls are closer, the momentum lines are more and more

curved as the walls are closer. Along the upper wall, the

momentum function decreases, and this decrease occurs

through a square profile (Eqs. (38b) and (39)). The

momentum function is negative there. This means that,

when traveling between two points of the upper wall,

there is a force acting over the fluid in the �y direction.

This is the resulting force of the action–reaction pair at

the upper boundary, where the wall acts over the fluid

through a force in the �y direction. This force is due

to the pressure, and as the pressure decreases along the

channel so decreases this force. This is the reason why

the momentum lines become sparser as x
*
increases.

At the lower wall it occurs a similar situation, noting

that at this boundary the wall acts the fluid through a

stress that points in the y direction.
3.3. Forced laminar boundary layer flow near a flat

plate: similarity solution

When dealing with the laminar boundary layer flow

adjacent to a flat plate, as illustrated in Fig. 8, in the

usual analysis there are no important pressure changes,

and the pressure contribution for the momentum equa-

tions can be neglected [11]. Assuming that the boundary

layer is thin, (d/L) 1, the boundary layer momentum

equation can be obtained from Eq. (5) as
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o

ox
ðquuÞ þ o

oy
quv� sxy
� 	

¼ 0 ð43Þ

where the shear stress sxx was neglected when comparing

with quu, that is, assuming that quu� 2l(ou/ox). From
scale analysis, this inequality gives ReL � 2, where

ReL = (qU1L)/l, a result that is compatible with the

boundary layer hypothesis (ReL � 1). The shear stress

in Eq. (43) is evaluated assuming that, in the boundary

layer, (ou/oy) � (ov/ox). Scale analysis for this inequal-

ity gives d/L  1, also compatible with the boundary

layer hypothesis. From scale analysis it is also obtained

that quv � l(ou/oy), thus resulting in the boundary layer

momentum equation [11]

o

ox
ðquuÞ þ o

oy
quv� l

ou
oy

� �
¼ 0 ð44Þ

It is this momentum equation that will be used to ob-

tain both the flow solution and the momentum function

in the boundary layer, by using the similarity transfor-

mation, retaining that the boundary layer solution is

an approximate solution. In this case, Eq. (44) is the x

momentum equation, which includes the simplifications

taken for the boundary layer model, and it is thus the

momentum equation for the boundary layer taking into

account the x and y momentum balances in the bound-

ary layer.

The similarity formulation, for a fluid of constant

properties, begins by defining the similarity variable

gðx; yÞ ¼ y
dðxÞ ¼ yx1=2Re1=2L L�1=2 ð45Þ

where L is the total length of the boundary layer. The

streamfunction for this problem is defined as

wðx; gÞ ¼ qU1Re�1=2
L L1=2x1=2f ðgÞ ð46Þ

where f(g) is the dimensionless similarity function to be

evaluated. The velocity components are evaluated from

the so defined streamfunction as qu = (ow/oy) and q
v = (�ow/ox). Making the space co-ordinates dimension-

less as x
*
= x/L and y	 ¼ yRe1=2L L�1, and the velocity

components dimensionless as (u
*
,v

*
) = (u,v)/U1, it is

gðx	; y	Þ ¼ x�1=2
	 y	, and the dimensionless velocity com-

ponents can be obtained as

u	 ¼ f 0 ð47aÞ

v	 ¼ ð1=2ÞRe�1=2
L x�1=2

	 gf 0 � fð Þ ð47bÞ

where f 0 = df/dg. When these velocity components are

introduced into the boundary layer momentum equa-

tion, Eq. (44), the following ordinary differential equa-

tion is obtained for f(g)

2f 000 þ ff 00 ¼ 0 ð48Þ

subjected to the boundary conditions f(0) = f 0(0) = 0 and

f 0(g ! +1) = 1. The similarity transformation has thus
the advantage of reducing the number of independent

variables from 2 to 1, and transform a partial differential

equation in an ordinary differential equation. Eq. (48)

can be solved numerically, and once known the solution

for f the flow solution is readily known using Eqs. (47a)

and (47b).

The momentum function Mx can be defined, for this

simplified case, from Eq. (44) through (oMx/oy) = quu
and �(oMx/ox) = quv � l(ou/oy). Making the momen-

tum function dimensionless as Mx
	 ¼ Mx=ðqU 2

1
LRe�1=2

L Þ, the dimensionless expressions for the momen-

tum function are

oMx
	

oy	
¼ f 02 ð49aÞ

� oMx
	

ox	
¼ x�1=2

	
1

2
gf 02 � ff 0� 	

� f 00
� �

ð49bÞ

Assuming that the expression for the dimensionless

momentum function Mx
	 is of the form

Mx
	 x	; gð Þ ¼ xn	gðgÞ ð50Þ

similarly to what was made before for the heatfunction

in a laminar forced convection boundary layer [7], the

first-order derivatives of Mx
	 can be obtained from Eq.

(50) and made equal to the expressions given by Eqs.

(49a) and (49b), and from the resulting equalities it is ex-

tracted that

gðgÞ ¼ 1

n
xð�nþ1=2Þ
	

1

2
ff 0 þ f 00

� �
ð51Þ

This function is dependent only of g if n = 1/2, and the

expression for the similarity version of the dimensionless

momentum function Mx
	 becomes

Mx
	ðx	; gÞ ¼ x1=2	 ff 0 þ 2f 00ð Þ ð52Þ

with Mx
	ð0; 0Þ ¼ 0. In this way, once known the solution

for the similarity function, f(g), the solution for the

dimensionless momentum function Mx
	 is also readily

known.

In what concerns the momentum function My, it can

be defined for this simplified case through (oMy/oy) =

quv � l(ou/oy) and �(oMy/ox) = qvv � 2l(ov/oy). In this

case it is also assumed that (ou/oy)� (ov/ox) or, in an

order of magnitude sense, that d/L 1 and, as previ-

ously mentioned, quv � l(ou/oy). Scale analysis also

gives that qvv � 2l(ov/oy). However, a similarity solu-

tion for My
	, in the form of Eq. (52), cannot be obtained.

Thus, the analysis of results will be made taken into ac-

count the dimensionless momentum function Mx
	 only.

Results of the dimensionless momentum function

Mx
	, obtained from Eq. (52), are presented in Fig. 9a

(using the dimensionless similarity variable as ordinate)

and b (using the dimensionless vertical co-ordinate as
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Fig. 9. Dimensionless momentum lines Mx
	 for the forced

laminar boundary layer flow problem: (a) using g/5 as ordinate

and (b) using y
*
/5 as ordinate.
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ordinate). It should be stressed that these results are for-

mally similar to the ones for the heatfunction obtained

for the laminar forced convection boundary layer prob-

lem, as presented in [7]. The momentum function in-

creases along the flat plate because, for a bottom

surface of an element, a shear force is positive when it

points in the �x
*
direction. It can be seen also that the

shear force is more intense near the leading edge of the

flat plate, the momentum lines being sparser for posi-

tions of the flat plate with higher values of x
*
. In partic-

ular, Fig. 9b is very rich, showing as the momentum of

the free stream is entrained by the boundary layer, and

how this momentum reaches the flat plate, in the form

of a shear stress pointing in the �x
*
direction. In this
case, as it is ðoMx
	=oy	Þy	¼0 ¼ 0, the slope of the momen-

tum function is null at the flat plate, for y
*
= 0.

The local skin-friction coefficient is obtained as [11]

Cf ;x ¼
lðou=oyÞy¼0

h i
x

ð1=2ÞqU 2
1

¼ 2ðf 00Þg¼0Re
�1=2
x ð53Þ

where Rex = qU1x/l, and from Eq. (49b) it can be ob-

tained that

oMx

ox

 L

ð1=2ÞqU 2
1L

¼ 2ðf 00Þg¼0Re
�1=2
x ¼ Cf ;x ð54Þ

where (f
00
)g=0 = 0.332. In this way, if the momentum

function is made dimensionless in the adequate way,

its variation with x
*
equals the local skin-friction coeffi-

cient. Also in this case it can be used an overall dimen-

sionless parameter to quantify the overall force acting in

the x direction in the fluid-wall interface, similarly to

what was referred in Section 3.2.

3.4. Laminar forced flow in a channel with an obstacle

In this case the domain under analysis is the half

channel presented in Fig. 10. The half channel has width

D and length L, and includes an obstacle of length Lob

and height Hob, which is placed at a distance xob mea-

sured away from the inlet. The lower boundary of the

half channel is a symmetry plane. In particular, it was

considered a channel with the following geometrical

parameters: L/D = 4, Hob/D = 0.25, Lob/D = 0.20, and

xob/D = 1.

The flow problem is taken in the dimensionless form

through the dimensionless mass conservation and

momentum differential equations

ou	
ox	

þ ov	
oy	

¼ 0 ð55Þ

o

ox	
ðu	u	Þ þ

o

oy	
ðv	u	Þ

¼ � oðp � p0Þ	
ox	

þ 1

ReD

o2u
ox2	

þ o2u
oy2	

� �
ð56aÞ
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Fig. 11. Dimensionless results for the flow problem in a channel with an obstacle, for ReD = 10: (a) stream lines; (b) momentum lines

Mx
	; and (c) momentum lines My
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o

ox	
ðu	v	Þ þ

o

oy	
ðv	v	Þ

¼ � oðp � p0Þ	
oy	

þ 1

ReD

o2v
ox2	

þ o2v
oy2	

� �
ð56bÞ

where the co-ordinates are made dimensionless as

(x
*
, y

*
) = (x,y)/D, the velocity components as (u

*
,v

*
) =

(u,v)/U, the pressure as p
*
= p/(qU2), and the Reynolds

number ReD = qUD/l is based on the width D.

Once known the flow solution, obtained using a 2D

laminar version of the control volume finite element

method presented in [19], the momentum functions can

be evaluated as the solution of Eqs. (15) and (17). Mak-

ing the momentum functions dimensionless as

ðMx
	;M

y
	Þ ¼ ðMx;MyÞ=ðqU 2DÞ, the dimensionless version

of Eqs. (15) and (17) become

o2Mx
	

ox2	
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Some of the results obtained for this problem are pre-

sented in Fig. 11a–c for ReD = 10 and in Fig. 12a–c for

ReD = 100. Fig. 11a presents the stream lines, and thus

the topology of the flow. In Fig. 11b are presented the

dimensionless momentum lines of Mx
	. It is observed

the momentum inlet, essentially through the inertia

and pressure terms. Some of this entering momentum

is lost against the obstacle. At the lower boundary there

are no forces in the x direction, as the plane y
*
= 0 is a

symmetry plane. At the upper surface it is observed

how part of the entering momentum is transferred to

this wall. The momentum function values decrease along

the upper boundary, thus meaning that the upper sur-

face acts over the fluid through shear stresses pointing

in the �x direction. In what concerns the dimensionless

momentum function My
	, presented in Fig. 11c, it pre-

sents a profile with some similitude with this presented

in Fig. 7b, and the reasons are essentially the same as ex-

plained when analyzing Fig. 7b.

Results for ReD = 100 are presented in Fig. 12a–c.

Stream lines, in Fig. 12a, show a larger region of the flow

behind the obstacle being affected by it. The main pattern

of the momentum function Mx
	 remains as for the case of

ReD = 10 (Fig. 11b). It should be noted, however, that a

higher value of the Reynolds number can be interpreted

as a fluid of lower viscosity, and the involved forces in the

x direction are lower than for ReD = 10, as given by the

dimensionless values of the momentum function Mx
	. At
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Fig. 12. Dimensionless results for ReD = 100. Base legend as for Fig. 11.
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the upper boundary the momentum lines forMx
	 are thus

sparser for ReD = 100 than for ReD = 10.

In what concerns the dimensionless momentum func-

tion My
	, presented through the dimensionless momen-

tum lines in Fig. 12c, its pattern is essentially the same

as in Fig. 11c. However, for a fluid with higher Reynolds

number the involved forces in the x direction are lower,

and it is also lower the pressure decrease along the chan-

nel, as given by the momentum lines in Fig. 12c.
4. Conclusions

Convective heat and/or mass transfer processes can

be visualized and analyzed using the heatfunction and

the heat lines and/or using the massfunction and mass

lines. Similarly, the momentum functions can be defined

for two-dimensional steady flows, and their contour

plots, the momentum lines, can be used for flow visual-

ization and analysis. Streamfunction and stream lines

give a good picture about the topology of the flow,

but not relevant information about the forces present

within the fluid and at the interfaces between the fluid

and the walls containing it. Momentum functions and

momentum lines give very useful information about

these interactions, in the form of forces.

Due to the vector nature of forces, two momentum

functions need to be defined, associated with the x and

y Cartesian co-ordinate directions. Over the momentum
lines there are no stresses or forces in one co-ordinate

direction, and the region between two momentum lines

can be seen as a beam in which surface there are no

stresses or forces in that co-ordinate direction under

analysis. It is well known that care needs to be taken

when analyzing the state of stress at a point, as the in-

volved forces are dependent of the orientation of the sur-

face under analysis. This same care should be present

when dealing with the momentum functions and

momentum lines, as they are closely related with the

state of stress at a point.

Momentum functions can be used to obtain momen-

tum arrows� pictures. For the worked examples, how-

ever, the message given by the momentum lines is

much more clear about the involved forces than that gi-

ven by the momentum arrows.

Presented results, for relatively simple flow problems,

show new pictures towards a better understanding, visu-

alization and quantification of the forces involved with

fluid flow. With these pictures, closer comparisons can

be made between the heat and/or mass transfer processes

and the momentum transfer processes. When made

dimensionless in the adequate way, the momentum func-

tions are closely related with the skin-friction coefficient

that characterizes the overall wall–fluid interaction in

terms of forces, which is one of the most relevant param-

eters for engineering purposes.

When dealing with markedly recirculating flows, pic-

tures given by the momentum lines are not usually so
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clear, as the pressure term increases in importance. In this

case, the main information obtained from the momen-

tum lines is that opposed walls support pressure forces,

and only small effects arise in the momentum lines asso-

ciated with the (usually more important from the engi-

neering viewpoint) shear stresses at the walls. However,

further work will result in improvements of the method.
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